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Agenda

 Introduction

 Nonlinear estimation
– Algorithm formulation
– Test data
– Results

 Conclusions
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Algorithm Development:  Overview

 Objectives
– Improve pixel-level detection:  Reduce probability of false alarm for given Pd
– Address optically-thick plumes:  Improve accuracy of estimated path 

integrated concentration (column density, CL)
– Compatible with real-time processing

 Limitations of current practice
– Matched-filter-based detection presumes optically-thin plume
– Other approaches require prior measurements of background – not 

compatible with on-the-move detection

 Payoff:  Improve detection immediately following large-scale 
release, low-lying plumes; improve mass estimate
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Problem Formulation

 Ensemble of measured spectra
 Measured spectra are nonlinear functions of atmospheric temperature, 

constituent profiles, background characteristics, etc.
 Desire inverse solution to radiative transfer equation (RTE)
 Inverse solution is mathematically ill-posed – no unique solution for Rn
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Relation to Atmospheric Profile Retrieval

 Stratified atmosphere model
 Profile retrieval

– Many stratifications
– Simple background
– Apply constraints to layer-to-layer variation

 Plume detection
– Simple atmosphere
– Complicated background
– Apply constraints to background characterization
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Simplified Radiative Transfer Model

 Simplifying assumptions:  
– Homogeneous atmosphere between sensor and vapor cloud
– Cloud is at air temperature

 Compare performance of non-linear (exact) RT model with 
linearized approximation
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Adaptive InfraRed Imaging Spectroradiometer (AIRIS)

 Imaging Fabry-Perot spectrometer
– Mirror spacing ~ 
– Staring IR FPA
– Band sequential data acquisition
– Co-registration of narrowband images
– Tune time ~ 2 ms

 Selective sampling of 
wavelengths

– Acquire imagery only at 
wavelengths which facilitate 
target ID

– Minimize data volume
 Wide field-of-view, wide 

spectral coverage
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TEP Detection:  
Shortcoming of Thin Plume Approximation

 Triethyl phosphate (TEP) release
 Post-processing: 

– Non-linear estimator in IDL

– False alarm mitigation:  4 of 8 
spatial filter 

– Bad pixels substituted

 Detection key:
– TEP only

– Yellow:  OD ~ 0

– Red:  OD  1



VG10-076-8
Physical Sciences Inc.

Agenda

 Introduction

 Nonlinear estimation
– Algorithm formulation
– Test data
– Results

 Conclusions
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Optimal Estimation:  Bayesian Approach

 Bayesian posterior pdf for model parameter values:

 Maximum likelihood parameter values maximize posterior: 

 Multi-variate normal pdf for deviation between model and measurement:

 Prior pdf for model parameter values
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 Signal model:  

 Plume transmission:  

 Infrared background:
– Linear mixing model
– Probabilistic Principal Components
– Robust estimate of sample covariance (Huber-type M-estimator) 

 Model parameters:
– :  Plume OD
– Ta:  Plume/air temperature
– :  Parameters which account for bkgd. radiance given bkgd. model  

Optimal Estimation:  Signal Model
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Minimize Cost Function

 Maximum likelihood parameter values minimize cost function
 Multivariate normal pdfs result in "quadratic" cost function

– Quadratic formulation:  

– Prior applied to background coefficients only:

– Residuals vector:

 Determine maximum likelihood parameter values by nonlinear estimation
– Approach not limited to quadratic cost function
– Quadratic cost function amenable to computationally-efficient solution
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Nonlinear Optimization Algorithms

 Iterative determination of parameters, e.g., Newton's Method:

 Gauss-Newton algorithm

– Appoximate Hessian matrix:

– Parameter update equation:

– Initial guess at  from linear model

 Levenberg-Marquardt algorithm also applicable
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Agenda

 Introduction

 Nonlinear estimation
– Algorithm formulation
– Test data
– Results

 Conclusions

 Next generation algorithm(s)
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Test Regions

 Plume-free data augmented with 
synthetic plumes: 

– 64 x 5 pixels
– Max OD from 0 to 3.0 (base e)
– T(plume) = T(air) = 25.0 deg C

 Thermal contrast
– ~0 K along horizon
– Monotonic increase with elev. angle

 Test both favorable and 
unfavorable regions 

Region  1
(2.6  0.5 K)

Region  2 
(5.9  0.6 K) 

AIRIS-WAD datacube:  256 x 256 pixels
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Simulation:  Synthetic R-134a Plumes

 Effective plume transmission:
– Reference spectrum from PNNL 

library 

– Specify column density
– Beer's Law + instrument resolution 

function

 Data augmentation:  
– Partition measurement into 

estimated signal, noise
– Modify signal w/plume signature
– Add back estimated noise
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Performance Metric:  ROC Curves

 Binary decision hypotheses
– H0 ("plume absent") and H1 ("plume present")
– pdfs for detection statistic:  

 ROC curve is Pd(Fth) vs Pfa(Fth)  
– Pd from plume-augmented region
– Pfa from rest of scene

 ROC "surface": Pd(; Fth) 
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Performance Comparison with Matched Filter

 Objective:  Compare nonlinear estimation with matched filter estimation
– Detection statistics
– Column density/optical density

 Detection with nonlinear estimator:  F test 

 Analogous metric for clutter-matched filter:  Adaptive Cosine Estimator 
(ACE)

 Matched-filter optical density estimate: 

 Expect near identical results for optically-thin plumes
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R-134a Detection:  Optically-Thin Plume, OD=0.1

 Plume column density = 82 mg/m2 (20 ppmv-m)
 Detection statistics not favorable in either Region
 ACE and Gauss-Newton ROC curves are nearly identical

– 20 bands in test datacube
– OD=0 reference spectrum

Region  1
(2.6  0.5 K)

Region  2 
(5.9  0.6 K) 

AIRIS-WAD datacube:  256 x 256 pixels
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R-134a Detection:  Optically-Thin Plume, OD=0.3

 Plume column density = 246 mg/m2 (59 ppmv-m)
 Detection statistics not favorable in Region 1, marginal in Region 2

– Lower thermal contrast
– ~2 orders of magnitude reduction in Pfa from Region 1 to Region 2

 ACE and Gauss-Newton ROC curves are nearly identical

Region  1
(2.6  0.5 K)

Region  2 
(5.9  0.6 K) 

AIRIS-WAD datacube:  256 x 256 pixels
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R-134a Detection:  Optically-Thick Plume, OD=1.0

 Plume column density = 822 mg/m2 (197 ppmv-m)
 Detection statistics favorable in Region 2, marginal in Region 1

– >2 orders of magnitude reduction in Pfa from Region 1 to Region 2 
 Gauss-Newton produces significantly more favorable ROC curves 

than ACE
– Factor of ~2 improvement in Region 1 (Pfa for fixed Pd)
– Multiple orders of magnitude improvement in Region 2

Region  1
(2.6  0.5 K)

Region  2 
(5.9  0.6 K) 

AIRIS-WAD datacube:  256 x 256 pixels
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R-134a Detection:  Optically-Thick Plume, OD=2.0

 Plume column density = 1643 mg/m2 (394 ppmv-m)
 Detection statistics favorable in both Regions
 Gauss-Newton produces significantly more favorable ROC curves than ACE

– >1 order of magnitude improvement in Region 1
– Multiple orders of magnitude improvement in Region 2

Region  1
(2.6  0.5 K)

Region  2 
(5.9  0.6 K) 

AIRIS-WAD datacube:  256 x 256 pixels
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Column Density Estimation

 Increased thermal contrast reduces uncertainty, no effect overall accuracy
 Nonlinear estimation 

– Accurately recovers embedded OD (CL) 
– Systematic deviation at OD>1 is instrument resolution effect

 Matched Filter systematically underestimates CL
 Nonlinear estimator always as good or better than MF

Region 1 Region 2
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Algorithm Execution

 Gauss-Newton algorithm is 
iterative

 Termination criterion: 

 Initial guess is Iteration 0

 Typical results:
– 1-2 iterations for no plume (plume 

OD=0)
– 3 iterations to converge for 

OD~2-3 TEP plume

 Decreasing  to 0.0001 increase 
no. iteration but no statistically-
significant effect on CL

max
110 
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
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
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C
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Summary and Conclusions

 Developed nonlinear estimator for plume detection and characterization 
based on RTE

– Bayesian formulation

– Statistical model for IR background

– Gauss-Newton algorithm to estimate maximum a posteriori (MAP) values

 Signal model developed for non-scattering atmosphere, single layer plume
– Easily modified to address more complicated atmospheres 

 Nonlinear estimation significantly outperforms matched-filter-based with 
optically-thick plumes

– "Orders of magnitude" improvement

– NL estimator and matched filter produce equivalent results for optically-thin plumes

 This work was performed under Contracts from the Defense Threat 
Reduction Agency (HDTRA01-07-C-0067) and US Army ECBC Aberdeen 
Proving Ground, MD (W911SR-06-C-0022). Any opinions, findings and 
conclusions or recommendations expressed in this material are those of 
the author and do not necessarily reflect the views of HDRA 
or the Army.
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Data Processing Chain

 Focus is pixel-level target detection
 New background characterization approach facilitates 

improved pixel-level detection
 "A chain is only as strong as its weakest link."

– Provide higher quality input to False Alarm Mitigation block
– False Alarm Mitigation is separate issue

Identify
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Calculate
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Bad Pixel,
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Technical Approach

 Adapt methodology used for atmospheric profile retrieval from 
space-based sensor data (e.g. AIRS, IASI, MODIS, TES)
– Parameterize Radiative Transfer Equation (RTE)
– Apply Estimation Theory to determine max. likelihood parameter values
– Exploit large data set:  utilize ensemble statistics

 Rationale:
– Physics-based model for observations
– Statistically-justified constraints 
– Strong theoretical foundation (see, e.g., C.D.Rodgers, Inverse Methods for 

Atmospheric Sounding)

 Benefits
– Adaptable framework
– Immediate application to non-scattering atmosphere
– Can modify RTE to address more complicated atmospheres
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Linear Models

 "Structured Background"
– Values of  are unconstrained
– Generalized Likelihood Ratio Test:

– Typical implementation:  B = eigenvectors of sample covariance matrix

 "Unstructured Background"
– b is a random vector
– Adaptive Cosine Estimator:

 Survey article:  Manolakis, Marden, & Shaw, "Hyperspectral Image 
Processing for ATR Applications," Lincoln Lab J., v.14 (2003)
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Pros and Cons of Linear Approximation

 Pro:  Matrix multiplication results in fast computation
– All spectra in ensemble may be processed in parallel
– Major computational expense is diagonalization of sample covariance matrix
– AIRIS-WAD:  <150 ms to process 65536 twenty element spectra for four 

target signatures (using 2005 vintage technology)

 Pro:  Detection statistics well-understood for Gaussian noise

 Con:  Underlying physical assumptions not valid for detection 
scenarios of interest
– Mathematical model not matched to physics

– Linear approximation to Beer's Law can introduce significant error

  ssp   1exp
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Why Gauss-Newton Yields Better Results

 Model is matched to the data
 Fit residuals are systematically larger with linear model

– Result of least-squares minimization
– Location of largest residuals highly correlated with strongest R-134a absorption features

Spectrum augmented with OD=3.0 plume Ratios of rms residuals in plume region, OD=3.0 to OD=0
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Adaptive Infrared Imaging Spectroradiometer –
Wide Area Detector (AIRIS-WAD)

 Optical:
– 256 x 256 pixels
– 30 deg x 30 deg FOV
– spectral coverage: 7.9 to 

11.2 m at ~0.1 m resolution 
(~1% of )

 Datacubes:  
– 20 wavelengths
– user selectable ’s, specified 

prior to mission

 Real-time datacube 
processing:  up to 3 Hz

 Detection algorithm history:  
– GLRT:  Winter 2005-Spring 

2006
– ACE:  since Spring 2006
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Hyperspectral Background Model

 Probabilistic Principal Components-
based 

– M.E.Tipping & C.M.Bishop, J.R.Statist. 
Soc. B (1999)  

 Linear mixing model

 Eigenvalue-based covariance 
regularization

  = robust estimate of sample 
covariance:  Huber-type M-estimator

 Bx 

DBBT  ˆ

  2/12/1
mmm IUDB 

  2/12/1 DUUD T
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Gauss-Newton Algorithm

 Follows from Newton's method – simplifying approximations
 Good for solving weakly nonlinear equations
 Hessian matrix:

 Gradient:

 Parameter update equation:

 Initial guess at  from linear model
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